CHAPTER 9 — THE SD of the Prediction Errors (also known as RMSE)

The regression line estimates the average value of \(y \) for each value of \(x \). But unless the correlation is perfect, the actual \(y \) values differ from the predicted values. These differences are called prediction errors or **residuals**.

The distance a point is off the regression line is its prediction error (or residual).

\[
\text{Prediction Error} = \text{Actual value} - \text{Predicted value}
\]

Example 1: What are the residuals the following points? (How far above (+) or below (-) the regression line are they?)

a) A
\[
\text{residual} = \frac{\text{actual } y - \text{predicted } y}{\text{actual}} = \frac{70 - 54}{16} = 9
\]

b) B
\[
42 - 64 = -22
\]

c) C
\[
52 - 58 = -6
\]

For any regression line, the average (and the sum) of the errors is always zero because the positives and negatives cancel out. (see plot above right plot)

- The standard deviation of the errors, also called the **Root Mean Square Error (RMSE)**, is a measure of the typical spread of the data around the regression line.

The SD of the prediction errors is a measure of how accurate our regression estimates are. The better the regression estimate, the smaller the size of the errors.

If the regression estimates is perfect (when \(r = 1 \) or -1) then there's no error and all the points lie on the regression line, so the typical spread around the regression line= 0.

When \(r = 0 \), knowing \(x \) tells us NOTHING about \(y \), so the regression line doesn't help at all in making predictions. Our best guess for \(y \) is \(\text{ave}_y \), and our typical error is the SD, (the typical distance the y's are spread around the ave\(y \)).

107
Easy Formula for Computing the SD_{errors}

Rather than finding all the errors and then taking their root mean square, it’s much easier to use this formula:

\[\text{RMSE} = \text{SD}_{\text{errors}} = \sqrt{1-r^2} \times \text{SD}_y \]

If \(r = \pm 1 \), we can perfectly predict \(y \) from \(x \), so that means all the points lie on the regression line and we have no error.

So the SD of the errors should = \(0 \).

What does the formula give when \(r = \pm 1 \)?

Try it:

\[\text{SD}_{\text{errors}} = \sqrt{1-r^2} \times \text{SD}_y \]

If \(r = 0 \), our best prediction for \(y \) is just the average of \(y \), and our typical prediction error would be the typical distance the \(y \) values are from their average, which is just the SD of \(y \). So the SD of the errors should = \(\text{SD}_y \).

What does the formula give when \(r = 0 \)?

Try it:

\[\text{SD}_{\text{errors}} = \sqrt{1-r^2} \times \text{SD}_y \]

Always between 0 and 1

\[= \sqrt{1-0^2} \times \text{SD}_y \]

\[= \text{SD}_y \]

\[= 1 \times \text{SD}_y = \text{SD}_y \]
Example 2: The scatter plot below depicts the exam average (X) and the final exam scores (Y) of 107 Stat 100 students from a previous semester. (It’s the same plot as in Example 1.)

<table>
<thead>
<tr>
<th>Exams</th>
<th>Avg</th>
<th>SD</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>73.6</td>
<td>10.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

a) Find the slope and y-intercept of the regression equation for predicting finals from exams.

\[
\text{Final} = \frac{0.67}{\text{ave exam}} \times \text{Exams} + 18
\]

i) Find the slope.

\[
\text{slope} = r \times \frac{SD_y}{SD_x} = 0.6 \times \frac{10.3}{9.2} = 0.67
\]

ii) Find the y-intercept.

\[
73.6 = 0.67(83) + b \Rightarrow b = 18
\]

b) Use the above regression equation to predict the final exam score of a student who has a 90 exam average.

\[
\text{Final} = 0.67(90) + 18 = 78.3
\]

c) Do you think that prediction will be exactly correct? **No**

We need to add some wiggle room to that prediction. We use the RMSE to do that.

What is the RMSE for predicting the final score from exams scores?

\[
\text{RMSE} = \sqrt{1 - r^2} \times SD_y = \sqrt{1 - 0.6^2} \times 10.3 = 8.24
\]

d) Now attach that wiggle room to the estimate in (b) to give your estimate a range instead of an exact point estimate.

\[
78.3 \pm 8.24
\]

\[
(78.3 - 8.24, 78.3 + 8.24)
\]

\[
(70.06, 86.54)
\]
In cases where the scatter plot is roughly football-shaped, we can use our SD rules of thumb from the normal distribution:

- About 68% of the points are within 1 SD_{\text{errors}} of the regression line.
- About 95% of the points are within 2 SD_{\text{errors}} of the regression line.

Example 2 cont. Looking at the scatter plots above, it looks like we can apply the SD rule of thumb

e) About 68% of the time our predictions of finals based on exams will be right to within 8.25 points.

\[1 \text{SD}_{\text{error}} = 8.24 \approx 8.25 \text{ (rounded)} \]

\[16.5 \]

e) About 95% of the time they'll be right to within 16.25 points.

\[2 \times 8.25 = 16.5 \]
Analogous Statistics and Graphs for One Variable and Two Variable Data

by Uma Ravat

<table>
<thead>
<tr>
<th></th>
<th>One variable (eg. height only)</th>
<th>Two variables (eg. height and weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of numbers</td>
<td>Average</td>
<td>Bi-variates data</td>
</tr>
<tr>
<td>Center</td>
<td>SD</td>
<td>regression line</td>
</tr>
<tr>
<td>Spread</td>
<td>SD</td>
<td>SD errors (RMSE)</td>
</tr>
<tr>
<td>Graphically</td>
<td>Histogram</td>
<td>Scatter Plot</td>
</tr>
<tr>
<td>Ideal</td>
<td>Normal Curve</td>
<td>Football-Shaped Cloud</td>
</tr>
<tr>
<td>Rule for Ideal</td>
<td>1-2-3 SD rule</td>
<td>1-2-3 SD rule</td>
</tr>
</tbody>
</table>

![Diagram showing normal distribution and football-shaped cloud]

Chapter 3, 4, 5
Ch 6-9

You don't need this page for bonus notebook points